4.8 Article

Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers

Journal

PHYSICAL REVIEW LETTERS
Volume 100, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.203903

Keywords

-

Ask authors/readers for more resources

Ultrahigh frequency acoustic resonances (2 GHz) trapped within the glass core (1 mu m diameter) of a photonic crystal fiber are selectively excited through electrostriction using laser pulses of duration 100 ps and energy 500 pJ. Using precisely timed sequences of such driving pulses, we achieve coherent control of the acoustic resonances by constructive or destructive interference, demonstrating both enhancement and suppression of the vibrations. A sequence of 27 resonantly-timed pulses provides a 100-fold increase in the amplitude of the vibrational mode. The results are explained and interpreted using a semianalytical theory, and supported by precise numerical simulations of the complex light-matter interaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available