4.8 Article

Self-trapping of bosons and fermions in optical lattices

Journal

PHYSICAL REVIEW LETTERS
Volume 101, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.101.050402

Keywords

-

Ask authors/readers for more resources

We theoretically investigate the enhanced localization of bosonic atoms by fermionic atoms in three-dimensional optical lattices and find a self-trapping of the bosons for attractive boson-fermion interaction. Because of this mutual interaction, the fermion orbitals are substantially squeezed, which results in a strong deformation of the effective potential for bosons. This effect is enhanced by an increasing bosonic filling factor leading to a large shift of the transition between the superfluid and the Mott-insulator phase. We find a nonlinear dependency of the critical potential depth on the boson-fermion interaction strength. The results, in general, demonstrate the important role of higher Bloch bands for the physics of attractively interacting quantum gas mixtures in optical lattices and are of direct relevance to recent experiments with Rb-87-K-40 mixtures, where a large shift of the critical point has been found.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available