4.8 Article

Highly entangled ground states in tripartite qubit systems

Journal

PHYSICAL REVIEW LETTERS
Volume 100, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.100502

Keywords

-

Ask authors/readers for more resources

We investigate the creation of highly entangled ground states in a system of three exchange-coupled qubits arranged in a ring geometry. Suitable magnetic field configurations yielding approximate Greenberger-Horne-Zeilinger and exact W ground states are identified. The entanglement in the system is studied at finite temperature in terms of the mixed-state tangle tau. By generalizing a conjugate gradient optimization algorithm originally developed to evaluate the entanglement of formation, we demonstrate that tau can be calculated efficiently and with high precision. We identify the parameter regime for which the equilibrium entanglement of the tripartite system reaches its maximum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available