4.8 Article

Charge transfer, double and bond-breaking excitations with time-dependent density matrix functional theory

Journal

PHYSICAL REVIEW LETTERS
Volume 101, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.101.033004

Keywords

-

Ask authors/readers for more resources

Time-dependent density functional theory (TDDFT) in its current adiabatic implementations exhibits three remarkable failures: (a) completely wrong behavior of the excited state surface along a bond-breaking coordinate; (b) lack of doubly excited configurations; (c) much too low charge transfer excitation energies. These TDDFT failure cases are all strikingly exhibited by prototype two-electron systems such as dissociating H(2) and HeH(+). We find for these systems with time-dependent density matrix functional theory that: (a) Within previously formulated simple adiabatic approximations, the bonding-to-antibonding excited state surface as well as charge transfer excitations are described without problems, but not the double excitations; (b) An adiabatic approximation is formulated in which also the double excitations are fully accounted for.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available