4.8 Article

Very-long-range nature of capillary interactions in liquid films

Journal

PHYSICAL REVIEW LETTERS
Volume 100, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.106103

Keywords

-

Ask authors/readers for more resources

Micron-sized objects confined in thin liquid films interact through forces mediated by the deformed liquid-air interface. These capillary interactions provide a powerful driving mechanism for the self-assembly of ordered structures such as photonic materials or protein crystals. We demonstrate how optical micro-manipulation allows the direct measurement of capillary interactions between mesoscopic objects. The force falls off as an inverse power law in particles separation. We derive and validate an explicit expression for this exponent whose magnitude is mainly governed by particle size. For micron-sized objects we found an exponent close to, but smaller than 1, making capillary interactions a unique example of strong and very long ranged forces in the mesoscopic world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available