4.8 Article

Probing physical properties of confined fluids within individual nanobubbles

Journal

PHYSICAL REVIEW LETTERS
Volume 100, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.035301

Keywords

-

Ask authors/readers for more resources

Spatially resolved electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) has been used to investigate a He fluidic phase in nanobubbles embedded in a metallic Pd(90)Pt(10) matrix. Using the 1s -> 2p excitation of the He atoms, maps of the He density and pressure in bubbles of different diameters have been realized, to provide an indication of the bubble formation mechanism. Detailed local variations of the He K-line characteristics have been measured and interpreted as modifications of the electromagnetic properties of the He atom close to a metallic interface, which affects a correct estimation of the densities within the smallest bubbles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available