4.8 Article

Nanoengineering defect structures on graphene

Journal

PHYSICAL REVIEW LETTERS
Volume 100, Issue 17, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.100.175503

Keywords

-

Ask authors/readers for more resources

We present a new way of nanoengineering graphene by using defect domains. These regions have ring structures that depart from the usual honeycomb lattice, though each carbon atom still has three nearest neighbors. A set of stable domain structures is identified by using density functional theory, including blisters, ridges, ribbons, and metacrystals. All such structures are made solely out of carbon; the smallest encompasses just 16 atoms. Blisters, ridges, and metacrystals rise up out of the sheet, while ribbons remain flat. In the vicinity of vacancies, the reaction barriers to formation are sufficiently low that such defects could be synthesized through the thermally activated restructuring of coalesced adatoms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available