4.7 Article

Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method

Journal

PHYSICAL REVIEW E
Volume 87, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.87.013301

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [10802085]

Ask authors/readers for more resources

In this paper, a scheme for specifying contact angle and its hysteresis is incorporated into a multiphase lattice Boltzmann method. The scheme is validated through investigations of the dynamic behaviors of a droplet sliding along two kinds of walls: a smooth (ideal) wall and a rough or chemically inhomogeneous (nonideal) wall. For an ideal wall, the wettability of solid substrates is able to be prescribed. For a nonideal wall, arbitrary contact angle hysteresis can be obtained through adjusting advancing and receding angles. Significantly different phenomena can be recovered for the two kinds of walls. For instance, a droplet on an inclined ideal wall under gravity is impossible to stay stationary. However, the droplet on a nonideal wall may be pinned due to contact angle hysteresis. The steady interface shapes of the droplet on an inclined nonideal wall under gravity or in a shear flow quantitatively agree well with the previous numerical studies. Besides, the complex motion of a droplet creeping like an inchworm could be simulated. The scheme is found suitable for the study of contact line problems with and without contact angle hysteresis. DOI: 10.1103/PhysRevE.87.013301

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available