4.7 Article

Dynamic wetting at the nanoscale

Journal

PHYSICAL REVIEW E
Volume 88, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.88.033010

Keywords

-

Funding

  1. Japan Science and Technology Agency through CREST
  2. Swedish Research Council through the Linne Flow Center
  3. Japan Society for the Promotion of Science
  4. Sasakawa Foundation

Ask authors/readers for more resources

Although the capillary spreading of a drop on a dry substrate is well studied, understanding and describing the physical mechanisms that govern the dynamics remain challenging. Here we study the dynamics of spreading of partially wetting nanodroplets by combining molecular dynamics simulations and continuum phase field simulations. The phase field simulations account for all the relevant hydrodynamics, i.e., capillarity, inertia, and viscous stresses. By coordinated continuum and molecular dynamics simulations, the macroscopic model parameters are extracted. For a Lennard-Jones fluid spreading on a planar surface, the liquid slip at the solid substrate is found to be significant, in fact crucial for the motion of the contact line. Evaluation of the different contributions to the energy transfer shows that the liquid slip generates dissipation of the same order as the bulk viscous dissipation or the energy transfer to kinetic energy. We also study the dynamics of spreading on a substrate with a periodic nanostructure. Here it is found that a nanostructure with a length scale commensurate with molecular size completely inhibits the liquid slip. The dynamic spreading is thus about 30% slower on a nanostructured surface compared to one that is atomically smooth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available