4.7 Article

Nonequilibrium dynamics of a confined colloidal bilayer in a planar shear flow

Journal

PHYSICAL REVIEW E
Volume 88, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.88.052307

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 910, B2]

Ask authors/readers for more resources

Using Brownian dynamics (BD) simulations we investigate the impact of shear flow on structural and dynamical properties of a system of charged colloids confined to a narrow slit pore. Our model consists of spherical microions interacting through a Derjaguin-Landau-Verwey-Overbeek (DLVO) and a soft-sphere potential. The DLVO parameters were chosen according to a system of moderately charged silica particles (with valence Z similar to 35) in a solvent of low ionic strength. At the confinement conditions considered, the colloids form two well-pronounced layers. In the present study we investigate shear-induced transitions of the translational order and dynamics in the layers, including a discussion of the translational diffusion. In particular, we show that diffusion in the shear-melted state can be described by an analytical model involving a single shear-driven particle in a harmonic trap. We also explore the emergence of zigzag motion characterized by spatiotemporal oscillations of the particles in the layers in the vorticity direction. Similar behavior has been recently observed in experiments of much thicker colloidal films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available