4.7 Article

Structure and dynamics of interfaces between two coexisting liquid-crystalline phases

Journal

PHYSICAL REVIEW E
Volume 87, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.87.052406

Keywords

-

Funding

  1. German Research Foundation (DFG) [WI 4170/1-1]

Ask authors/readers for more resources

A phase-field-crystal model is used to access the structure and thermodynamics of interfaces between two coexisting liquid-crystalline phases in two spatial dimensions. Depending on the model parameters, there is a variety of possible coexistences between two liquid-crystalline phases, including a plastic triangular crystal (PTC). Here, we numerically calculate the profiles for the mean density and for the nematic order tensor across the interface for isotropic-PTC and columnar-PTC (or equivalently smectic-A-PTC) phase coexistence. As a general finding, the width of the interface with respect to the nematic order parameter characterizing the orientational order is larger than the width of the mean-density interface. In approaching the interface from the PTC side, at first, the mean density goes down, and then the nematic order parameter follows. The relative shift in the two profiles can be larger than a full lattice constant of the plastic crystal. Finally, we also present numerical results for the dynamic relaxation of an initial order-parameter profile towards its equilibrium interfacial profile. Our predictions for the interfacial profiles can, in principle, be verified in real-space experiments of colloidal dispersions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available