4.7 Article

Quantum criticality analysis by finite-size scaling and exponential basis sets

Journal

PHYSICAL REVIEW E
Volume 87, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.87.043308

Keywords

-

Ask authors/readers for more resources

We combine the finite-size scaling method with the mesh-free spectral method to calculate quantum critical parameters for a given Hamiltonian. The basic idea is to expand the exact wave function in a finite exponential basis set and extrapolate the information about system criticality from a finite basis to the infinite basis set limit. The used exponential basis set, though chosen intuitively, allows handling a very wide range of exponential decay rates and calculating multiple eigenvalues simultaneously. As a benchmark system to illustrate the combined approach, we choose the Hulthen potential. The results show that the method is very accurate and converges faster when compared with other basis functions. The approach is general and can be extended to examine near-threshold phenomena for atomic and molecular systems based on even-tempered exponential and Gaussian basis functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available