4.7 Article

Hydrodynamic correlations in multiparticle collision dynamics fluids

Journal

PHYSICAL REVIEW E
Volume 86, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.86.056711

Keywords

-

Funding

  1. German Research Foundation (DFG) [SFB TR6]
  2. European Union through FP7-Infrastructures ESMI [262348]

Ask authors/readers for more resources

The emergent fluctuating hydrodynamics of the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale simulation technique for fluid dynamics, is analyzed theoretically and numerically. We focus on the stochastic rotation dynamics implementation of the MPC method. The fluid is characterized by its longitudinal and transverse velocity correlation functions in Fourier space and velocity autocorrelation functions in real space. Particular attention is paid to the role of sound, which leads to piecewise negative correlation functions. Moreover, finite system-size effects are addressed with an emphasis on the role of sound. Analytical expressions are provided for the transverse and longitudinal velocity correlations, which are derived from the linearized Landau-Lifshitz Navier-Stokes equation adopted for an isothermal MPC fluid. The comparison of the analytical results with simulations shows excellent agreement above a minimal length scale. The simulations indicate a breakdown in hydrodynamics on length scales smaller than this minimal length. This demonstrates that we have an excellent analytical description and understanding of the MPC method and its limitations in terms of time and length scales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available