4.7 Article

Comparison between spring network models and continuum constitutive laws: Application to the large deformation of a capsule in shear flow

Journal

PHYSICAL REVIEW E
Volume 83, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.83.041918

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research [23220012] Funding Source: KAKEN

Ask authors/readers for more resources

A capsule is a liquid drop enclosed by a solid, deformable membrane. To analyze the deformation of a capsule accurately, both the fluid mechanics of the internal and external fluids and the solid mechanics of the membrane must be solved precisely. Recently, many researchers have used discrete spring network models to express the membrane mechanics of capsules and biological cells. However, it is unclear whether such modeling is sufficiently accurate to solve for capsule deformation. This study examines the correlations between the mechanical properties of the discrete spring network model and continuum constitutive laws. We first compare uniaxial and isotropic deformations of a two-dimensional (2D) sheet, both analytically and numerically. The 2D sheet is discretized with four kinds of mesh to analyze the effect of the spring network configuration. We derive the relationships between the spring constant and continuum properties, such as the Young modulus, Poisson ratio, area dilation modulus, and shear modulus. It is found that the mechanical properties of spring networks are strongly dependent on the mesh configuration. We then calculate the deformation of a capsule under inflation and in a simple shear flow in the Stokes flow regime, using various membrane models. To achieve high accuracy in the flow calculation, a boundary-element method is used. Comparing the results between the different membrane models, we find that it is hard to express the area incompressibility observed in biological membranes using a simple spring network model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available