4.7 Article

Complexity of vesicle microcirculation

Journal

PHYSICAL REVIEW E
Volume 84, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.84.041906

Keywords

-

Funding

  1. Centre National d'Etudes Spatiales
  2. Agence Nationale de la recherche (ANR) MOSICOB.
  3. US National Foundation [OCI-1047980, OCI-0923710]
  4. Direct For Computer & Info Scie & Enginr
  5. Office of Advanced Cyberinfrastructure (OAC) [1341290] Funding Source: National Science Foundation

Ask authors/readers for more resources

This study focuses numerically on dynamics in two dimensions of vesicles in microcirculation. The method used is based on boundary integral formulation. This study is inspired by the behavior of red blood cells (RBCs) in the microvasculature. Red RBCs carry oxygen from the lungs and deliver it through the microvasculature. The shape adopted by RBCs can affect blood flow and influence oxygen delivery. Our simulation using vesicles (a simple model for RBC) reveals unexpected complexity as compared to the case where a purely unbounded Poiseuille flow is considered [Kaoui, Biros, and Misbah, Phys. Rev. Lett. 103, 188101 (2009)]. In sufficiently large channels (in the range of 100 mu m; the vesicle size and its reduced volume are taken in the range of those of a human RBC), such as arterioles, a slipperlike (asymmetric) shape prevails. A parachutelike (symmetric) shape is adopted in smaller channels (in the range of 20 mu m, as in venules), but this shape loses stability and again changes to a pronounced slipperlike morphology in channels having a size typical of capillaries (5-10 mu m). Stiff membranes, mimicking malaria infection, for example, adopt a centered or off-centered snakelike locomotion instead (the denomination snaking is used for this regime). A general scenario of how and why vesicles adopt their morphologies and dynamics among several distinct possibilities is provided. This finding potentially points to nontrivial RBCs dynamics in the microvasculature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available