4.7 Article

Theory of volumetric capacitance of an electric double-layer supercapacitor

Journal

PHYSICAL REVIEW E
Volume 83, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.83.056102

Keywords

-

Funding

  1. NSF
  2. FTPI

Ask authors/readers for more resources

Electric double-layer supercapacitors are a fast-rising class of high-power energy storage devices based on porous electrodes immersed in a concentrated electrolyte or ionic liquid. As yet there is no microscopic theory to describe their surprisingly large capacitance per unit volume (volumetric capacitance) of similar to 100 F/cm(3), nor is there a good understanding of the fundamental limits on volumetric capacitance. In this paper we present a non-mean-field theory of the volumetric capacitance of a supercapacitor that captures the discrete nature of the ions and the exponential screening of their repulsive interaction by the electrode. We consider analytically and via Monte Carlo simulations the case of an electrode made from a good metal and show that in this case the volumetric capacitance can reach the record values. We also study how the capacitance is reduced when the electrode is an imperfect metal characterized by some finite screening radius. Finally, we argue that a carbon electrode, despite its relatively large linear screening radius, can be approximated as a perfect metal because of its strong nonlinear screening. In this way the experimentally measured capacitance values of similar to 100 F/cm(3) may be understood.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available