4.7 Article

Collective oscillations in disordered neural networks

Journal

PHYSICAL REVIEW E
Volume 81, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.046119

Keywords

-

Funding

  1. EU [NEST-PATH-043309]
  2. Italian project Struttura e dinamica di reti complesse [3001]

Ask authors/readers for more resources

We investigate the onset of collective oscillations in a excitatory pulse-coupled network of leaky integrate-and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O. V. Popovych , Phys. Rev. E 71 065201(R) (2005)]. In fact, the maximum Lyapunov exponent turns out to scale to zero for N ->infinity, with an exponent that is different for the two types of disorder. In the thermodynamic limit, the random-network dynamics reduces to that of a fully homogeneous system with a suitably scaled coupling strength. Moreover, we show that the Lyapunov spectrum of the periodically collective state scales to zero as 1/N-2, analogously to the scaling found for the splay state..

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available