4.7 Article

Phase-2 reentry in cardiac tissue: Role of the slow calcium pulse

Journal

PHYSICAL REVIEW E
Volume 82, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.82.011907

Keywords

-

Funding

  1. MICINN [FIS2008-06335-C02-01, FIS2008-06335-C02-02, FIS2009-13360-C03-03]

Ask authors/readers for more resources

Phase-2 re-entry is thought to underlie many causes of idiopathic ventricular arrhythmias as, for instance, those occurring in Brugada syndrome. In this paper, we study under which circumstances a region of depolarized tissue can re-excite adjacent regions that exhibit shorter action potential duration (APD), eventually inducing reentry. For this purpose, we use a simplified ionic model that reproduces well the ventricular action potential. With the help of this model, we analyze the conditions that lead to very short action potentials (APs), as well as possible mechanisms for re-excitation in a cable. We then study the induction of re-entrant waves (spiral waves) in simulations of AP propagation in the heart ventricles. We show that re-excitation takes place via a slow pulse produced by calcium current that propagates into the region of short APs until it encounters excitable tissue. We calculate analytically the speed of the slow pulse, and also give an estimate of the minimal tissue size necessary for allowing reexcitation to take place.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available