4.7 Article

Dynamic entanglement in oscillating molecules and potential biological implications

Journal

PHYSICAL REVIEW E
Volume 82, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.82.021921

Keywords

-

Funding

  1. Austrian Science Fund
  2. European Union
  3. UK EPSRC through the IRC-QIP

Ask authors/readers for more resources

We demonstrate that entanglement can persistently recur in an oscillating two-spin molecule that is coupled to a hot and noisy environment, in which no static entanglement can survive. The system represents a non-equilibrium quantum system which, driven through the oscillatory motion, is prevented from reaching its (separable) thermal equilibrium state. Environmental noise, together with the driven motion, plays a constructive role by periodically resetting the system, even though it will destroy entanglement as usual. As a building block, the present simple mechanism supports the perspective that entanglement can exist also in systems which are exposed to a hot environment and to high levels of decoherence, which we expect, e. g., for biological systems. Our results also suggest that entanglement plays a role in the heat exchange between molecular machines and environment. Experimental simulation of our model with trapped ions is within reach of the current state-of-the-art quantum technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available