4.7 Article

Transverse flow in thin superhydrophobic channels

Journal

PHYSICAL REVIEW E
Volume 82, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.82.055301

Keywords

-

Funding

  1. DFG [Vi 243/1-3]

Ask authors/readers for more resources

We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro- and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeability, over all possible patterns, we optimize the area fractions, slip lengths, geometry, and orientation of the surface texture to maximize transverse flow. In the case of two aligned striped surfaces, very strong transverse flows are possible. Optimized superhydrophobic surfaces may find applications in passive microfluidic mixing and amplification of transverse electrokinetic phenomena.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available