4.7 Article

Measuring the convergence of Monte Carlo free-energy calculations

Journal

PHYSICAL REVIEW E
Volume 81, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.041117

Keywords

-

Ask authors/readers for more resources

The nonequilibrium work fluctuation theorem provides the way for calculations of (equilibrium) free-energy based on work measurements of nonequilibrium, finite-time processes, and their reversed counterparts by applying Bennett's acceptance ratio method. A nice property of this method is that each free-energy estimate readily yields an estimate of the asymptotic mean square error. Assuming convergence, it is easy to specify the uncertainty of the results. However, sample sizes have often to be balanced with respect to experimental or computational limitations and the question arises whether available samples of work values are sufficiently large in order to ensure convergence. Here, we propose a convergence measure for the two-sided free-energy estimator and characterize some of its properties, explain how it works, and test its statistical behavior. In total, we derive a convergence criterion for Bennett's acceptance ratio method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available