4.7 Article

Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

Journal

PHYSICAL REVIEW E
Volume 81, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.81.011121

Keywords

-

Funding

  1. Secretaria da Administracao do Estado da Bahia
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [07/08492-9, 09/01942-4]
  3. Academy of Finland through its COMP Center of Excellence
  4. EU [016447]
  5. NSF DMR [0502737, DMR-0906676]
  6. Division Of Materials Research [0906676] Funding Source: National Science Foundation

Ask authors/readers for more resources

We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures, we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available