4.7 Article

Scaling and anisotropy in magnetohydrodynamic turbulence in a strong mean magnetic field

Journal

PHYSICAL REVIEW E
Volume 82, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.82.026406

Keywords

-

Ask authors/readers for more resources

We present an analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudospectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles theta with respect to B-0 reveals a specific structure which remains hidden when not taking axial symmetry with respect to B-0 into account. For each direction, starting at the forced large scales, the spectrum first exhibits an amplitude drop around a wave number k(0) which marks the start of a scaling range and goes on up to a dissipative wave number k(d)(theta). The three-dimensional spectrum for k >= k(0) is described by a single theta-independent functional form F(k/k(d)), with the scaling law being the same in every direction. The previous properties still hold when increasing the mean field from B-0 = 5 up to B-0 = 10b(rms), as well as when passing from resistive to ideal flows. We conjecture that at fixed B-0 the direction-independent scaling regime is reached when increasing the Reynolds number above a threshold which raises with increasing B-0. Below that threshold critically balanced turbulence is expected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available