4.7 Article

Detailed investigation of thermal convection in a liquid metal under a horizontal magnetic field: Suppression of oscillatory flow observed by velocity profiles

Journal

PHYSICAL REVIEW E
Volume 82, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.82.056306

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [21244071]
  2. Grants-in-Aid for Scientific Research [21244071] Funding Source: KAKEN

Ask authors/readers for more resources

Thermal convection experiments in a liquid gallium layer were carried out with various intensities of uniform horizontal magnetic fields. The gallium layer was in a rectangular vessel with a 4:1:1 length ratio (1 is the height), where the magnetic field is applied in the direction normal to the longest vertical wall. An ultrasonic velocity profiling method was used to visualize the spatiotemporal variations in the flow pattern, and the temperature fluctuations in the gallium layer were also monitored. The observed flow pattern without a magnetic field shows oscillating rolls with axes normal to the longest vertical wall of the vessel. The oscillatory motion of the flow pattern was suppressed when increasing the applied magnetic field. The flow behavior was characterized by the fluctuation amplitude of the oscillation and the frequency in the range of Rayleigh numbers from 9.3 x 10(3) to 3.5 x 10(5) and Chandrasekhar numbers 0-1900. The effect of the horizontal magnetic field on the flow pattern may be summarized into three regimes with increases in the magnetic intensity: (1) no effect of the magnetic field, (2) a decrease in the oscillation of the roll structure, and (3) a steady two-dimensional roll structure with no oscillation. These regimes may be explained as a result of an increase in the dominance of Lorentz forces over inertial forces. The power spectrum from the temperature time series showed the presence of a convective-inertial subrange above Rayleigh numbers of 7 x 10(4), which suggests that turbulence has developed, and such a subrange was commonly observed above this Rayleigh number even with applied magnetic fields when the rolls oscillate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available