4.7 Article

Steady-state, simultaneous two-phase flow in porous media: An experimental study

Journal

PHYSICAL REVIEW E
Volume 80, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.036308

Keywords

bubbles; flow through porous media; two-phase flow; viscosity; wetting

Funding

  1. Norwegian Research Council

Ask authors/readers for more resources

We report on experimental studies of steady-state two-phase flow in a quasi-two-dimensional porous medium. The wetting and the nonwetting phases are injected simultaneously from alternating inlet points into a Hele-Shaw cell containing one layer of randomly distributed glass beads, initially saturated with wetting fluid. The high viscous wetting phase and the low viscous nonwetting phase give a low viscosity ratio M=10(-4). Transient behavior of this system is observed in time and space. However, we find that at a certain distance behind the initial front a local steady-state develops, sharing the same properties as the later global steady state. In this state the nonwetting phase is fragmented into clusters, whose size distribution is shown to obey a scaling law, and the cutoff cluster size is found to be inversely proportional to the capillary number. The steady state is dominated by bubble dynamics, and we measure a power-law relationship between the pressure gradient and the capillary number. In fact, we demonstrate that there is a characteristic length scale in the system, depending on the capillary number through the pressure gradient that controls the steady-state dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available