4.7 Article

Heat transfer mechanisms in bubbly Rayleigh-Benard convection

Journal

PHYSICAL REVIEW E
Volume 80, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.80.026304

Keywords

boiling point; bubbles; condensation; convection; evaporation; flow simulation; latent heat

Ask authors/readers for more resources

The heat transfer mechanism in Rayleigh-Beacutenard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with pointlike vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both thermally and mechanically. It is shown that the effect of the bubbles is strongly dependent on the ratio of the sensible heat to the latent heat as embodied in the Jakob number Ja. For very small Ja the bubbles stabilize the flow by absorbing heat in the warmer regions and releasing it in the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth destabilizes the flow with respect to single-phase convection and considerably increases the Nusselt number.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available