4.7 Article

Limits of declustering methods for disentangling exogenous from endogenous events in time series with foreshocks, main shocks, and aftershocks

Journal

PHYSICAL REVIEW E
Volume 79, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.79.061110

Keywords

-

Funding

  1. ETH Competence Center [CH1-01-08-2]

Ask authors/readers for more resources

Many time series in natural and social sciences can be seen as resulting from an interplay between exogenous influences and an endogenous organization. We use a simple epidemic-type aftershock model of events occurring sequentially, in which future events are influenced (partially triggered) by past events to ask the question of how well can one disentangle the exogenous events from the endogenous ones. We apply both model-dependent and model-independent stochastic declustering methods to reconstruct the tree of ancestry and estimate key parameters. In contrast with previously reported positive results, we have to conclude that declustered catalogs are rather unreliable for the synthetic catalogs that we have investigated, which contains of the order of thousands of events, typical of realistic applications. The estimated rates of exogenous events suffer from large errors. The branching ratio n, quantifying the fraction of events that have been triggered by previous events, is also badly estimated in general from declustered catalogs. We find, however, that the errors tend to be smaller and perhaps acceptable in some cases for small triggering efficiency and branching ratios. The high level of randomness together with the long memory makes the stochastic reconstruction of trees of ancestry and the estimation of the key parameters perhaps intrinsically unreliable for long-memory processes. For shorter memories (larger bare Omori exponent), the results improve significantly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available