4.7 Article

Microcanonical quantum fluctuation theorems

Journal

PHYSICAL REVIEW E
Volume 77, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.051131

Keywords

-

Ask authors/readers for more resources

Previously derived expressions for the characteristic function of work performed on a quantum system by a classical external force are generalized to arbitrary initial states of the considered system and to Hamiltonians with degenerate spectra. In the particular case of microcanonical initial states, explicit expressions for the characteristic function and the corresponding probability density of work are formulated. Their classical limit as well as their relations to the corresponding canonical expressions are discussed. A fluctuation theorem is derived that expresses the ratio of probabilities of work for a process and its time reversal to the ratio of densities of states of the microcanonical equilibrium systems with corresponding initial and final Hamiltonians. From this Crooks-type fluctuation theorem a relation between entropies of different systems can be derived which does not involve the time-reversed. process. This entropy-from-work theorem provides an experimentally accessible way to measure entropies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available