4.7 Article

Transmission-line analysis of ε-near-zero-filled narrow channels

Journal

PHYSICAL REVIEW E
Volume 78, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.016604

Keywords

-

Ask authors/readers for more resources

Following our recent interest in metamaterial-based devices supporting resonant tunneling, energy squeezing, and supercoupling through narrow waveguide channels and bends, here we analyze the fundamental physical mechanisms behind this phenomenon using a transmission-line model. These theoretical findings extend our theory, allowing us to take fully into account frequency dispersion and losses and revealing the substantial differences between this unique tunneling phenomenon and higher-frequency Fabry-Perot resonances. Moreover, they represent the foundations for other possibilities to realize tunneling through arbitrary waveguide bends, both in E and H planes of polarization, waveguide connections, and sharp abruptions and to obtain analogous effects with geometries arguably simpler to realize.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available