4.7 Article

Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach

Journal

PHYSICAL REVIEW E
Volume 77, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.050905

Keywords

-

Ask authors/readers for more resources

There is growing interest in studying the role of connectivity patterns in brain functions. In recent years, functional brain networks were found to exhibit small-world properties during different brain states. In previous studies, time-independent networks were recovered from long time periods of brain activity. In this paper, we propose an approach, the event-related networks, that allows one to characterize the dynamical evolution of functional brain networks in time-frequency space. We illustrate this approach by characterizing connectivity patterns in magnetoencephalographic signals recorded during a visiual stimulus paradigm. When compared with equivalent random and regular networks, the results reveal that functional connectivity varies with time and frequency during the processing of the stimulus, while maintaining a small-world structure. This approach may provide insights into the connectivity of other complex and spatially extended nonstationary systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available