4.7 Article

Macroscopic distinguishability between quantum states defining different phases of matter: Fidelity and the Uhlmann geometric phase

Journal

PHYSICAL REVIEW E
Volume 77, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.011129

Keywords

-

Ask authors/readers for more resources

We study the fidelity approach to quantum phase transitions (QPTs) and apply it to general thermal phase transitions (PTs). We analyze two particular cases: The Stoner-Hubbard itinerant electron model of magnetism and the BCS theory of superconductivity. In both cases we show that the sudden drop of the mixed state fidelity marks the line of the phase transition. We conduct a detailed analysis of the general case of systems given by mutually commuting Hamiltonians, where the nonanalyticity of the fidelity is directly related to the nonanalyticity of the relevant response functions (susceptibility and heat capacity), for the case of symmetry-breaking transitions. Further, on the case of BCS theory of superconductivity, given by mutually noncommuting Hamiltonians, we analyze the structure of the system's eigenvectors in the vicinity of the line of the phase transition showing that their sudden change is quantified by the emergence of a generically nontrivial Uhlmann mixed state geometric phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available