4.7 Article

Energy enhancement and chaos control in microelectromechanical systems

Journal

PHYSICAL REVIEW E
Volume 77, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.026210

Keywords

-

Ask authors/readers for more resources

For a resonator in an electrostatic microelectromechanical system (MEMS), nonlinear coupling between applied electrostatic force and the mechanical motion of the resonator can lead to chaotic oscillations. Better performance of the device can be achieved when the oscillations are periodic with large amplitude. We investigate the nonlinear dynamics of a system of deformable doubly clamped beam, which is the core in many MEMS resonators, and propose a control strategy to convert chaos into periodic motions with enhanced output energy. Our study suggests that chaos control can lead to energy enhancement and consequently high performance of MEM devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available