4.7 Article

Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: Comparison of time-and-space-averaged stresses from homogeneous Doll's and Sllod shear algorithms with those from boundary-driven shear

Journal

PHYSICAL REVIEW E
Volume 78, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.046701

Keywords

-

Ask authors/readers for more resources

Homogeneous shear flows (with constant strainrate dv(x)/dy) are generated with the Doll's and Sllod algorithms and compared to corresponding inhomogeneous boundary-driven flows. We use one-, two-, and three-dimensional smooth-particle weight functions for computing instantaneous spatial averages. The nonlinear normal-stress differences are small, but significant, in both two and three space dimensions. In homogeneous systems the sign and magnitude of the shearplane stress difference, P-xx-P-yy, depend on both the thermostat type and the chosen shearflow algorithm. The Doll's and Sllod algorithms predict opposite signs for this normal-stress difference, with the Sllod approach definitely wrong, but somewhat closer to the (boundary-driven) truth. Neither of the homogeneous shear algorithms predicts the correct ordering of the kinetic temperatures: T-xx>T-zz>T-yy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available