4.7 Article

Suppression of spatiotemporal chaos in the oscillatory CO oxidation on Pt(110) by focused laser light

Journal

PHYSICAL REVIEW E
Volume 77, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.046222

Keywords

-

Ask authors/readers for more resources

Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available