4.7 Article

Capillary pressure in a porous medium with distinct pore surface and pore volume fractal dimensions

Journal

PHYSICAL REVIEW E
Volume 77, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.77.021203

Keywords

-

Ask authors/readers for more resources

The relationship between capillary pressure and saturation in a porous medium often exhibits a power-law dependence. The physical basis for this relation has been substantiated by assuming that capillary pressure is directly related to the pore radius. When the pore space of a medium exhibits fractal structure this approach results in a power-law relation with an exponent of 3-D-v, where D-v is the pore volume fractal dimension. However, larger values of the exponent than are realistically allowed by this result have long been known to occur. Using a thermodynamic formulation for equilibrium capillary pressure we show that the standard result is a special case of the more general exponent (3-D-v)/(3-D-s) where D-s is the surface fractal dimension of the pores. The analysis reduces to the standard result when D-s=2, indicating a Euclidean relationship between a pore's surface area and the volume it encloses, and allows for a larger value for the exponent than the standard result when D-s>2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available