4.7 Article

Rheology of colloidal microphases in a model with competing interactions

Journal

PHYSICAL REVIEW E
Volume 78, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.78.021402

Keywords

-

Funding

  1. European Commission NEST Pathfinder program TRIGS [NEST-2005-PATH-COM-043386]

Ask authors/readers for more resources

We study the theological properties of colloidal microphases in two dimensions simulating a model of colloidal particles with competing interactions. Due to the competition between short-range attraction and long-range repulsion, as a function of the density the model exhibits a variety of microphases such as clusters, stripes, or crystals with bubbles. We prepare the system in a confined microphase employing Monte Carlo simulations and then shear the resulting configurations by applying a drag force profile. We integrate numerically the equation of motion for the particles and analyze the dynamics as a function of the density and the applied strain rate. We measure the stress-strain curves and characterize the yielding of the colloidal microphases. The results depend on the type of microphase. (i) Clusters are easily sheared along layers and the relative motion is assisted by rotations. (ii) Stripes shear easily when they are parallel to the flow and tend to jam when they are perpendicular to it. Under a sufficiently strong shear rate perpendicular stripes orient in the flow direction. (iii) Crystals with bubbles yield by fracturing along the bubbles and eventually forming stripes. We discuss the role of dislocations, emitted by the bubbles, in the yielding process. Finally, we analyze the effect of thermal fluctuations on the theological properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available