4.7 Article

Accuracy of analytical models of the large-scale matter distribution

Journal

PHYSICAL REVIEW D
Volume 88, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.88.083524

Keywords

-

Funding

  1. French Agence Nationale de la Recherche [ANR-12-BS05-0002]

Ask authors/readers for more resources

We investigate the possible accuracy that can be reached by analytical models for the matter density power spectrum and correlation function. Using a realistic description of the power spectrum that combines perturbation theory with a halo model, we study the convergence rate of several perturbative expansion schemes and the impact of nonperturbative effects, as well as the sensitivity to phenomeno-logical halo parameters. We check that the simple reorganization of the standard perturbative expansion, with a Gaussian damping prefactor, provides a well-ordered convergence and a finite correlation function that yields a percent accuracy at the baryon acoustic oscillation peak (as soon as one goes to second order). Lagrangian-space expansions are somewhat more efficient, when truncated at low orders, but may diverge at high orders. We find that whereas the uncertainty on the halo-profile mass-concentration relation is not a strong limitation, the uncertainty on the halo mass function can severely limit the accuracy of theoretical predictions for P(k) (this also applies to the power spectra measured in numerical simulations). The real-space correlation function provides a better separation between perturbative and nonperturbative effects, which are restricted to x less than or similar to 10h(-1) Mpc at all redshifts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available