4.7 Article

Ghost condensate in N=1 supergravity

Journal

PHYSICAL REVIEW D
Volume 87, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.87.065022

Keywords

-

Funding

  1. European Research Council [256994]
  2. DOE [DE-AC02-76-ER-03071]
  3. NSF [1001296]
  4. Division Of Physics
  5. Direct For Mathematical & Physical Scien [1001296] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present the theory of a supersymmetric ghost condensate coupled to N = 1 supergravity. This is accomplished using a general formalism for constructing locally supersymmetric higher-derivative chiral superfield actions. The theory admits a ghost condensate vacuum in de Sitter spacetime. Expanded around this vacuum, the scalar sector of the theory is shown to be ghost-free with no spatial gradient instabilities. By direct calculation, the fermion sector is found to consist of a massless chiral fermion and a massless gravitino. By analyzing the supersymmetry transformations, we find that the chiral fermion transforms inhomogeneously, indicating that the ghost condensate vacuum spontaneously breaks local supersymmetry with this field as the Goldstone fermion. Although potentially able to get a mass through the super-Higgs effect, the vanishing superpotential in the ghost condensate theory renders the gravitino massless. Thus local supersymmetry is broken without the super-Higgs effect taking place. This is in agreement with, and gives an explanation for, the direct calculation. DOI: 10.1103/PhysRevD.87.065022

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available