4.7 Article

Nonparametric reconstruction of the dark energy equation of state from diverse data sets

Journal

PHYSICAL REVIEW D
Volume 84, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.84.083501

Keywords

-

Funding

  1. Institute for Scalable Scientific Data Management
  2. DOE [W-7405-ENG-36]
  3. Los Alamos National Laboratory
  4. NASA

Ask authors/readers for more resources

The cause of the accelerated expansion of the Universe poses one of the most fundamental questions in physics today. In the absence of a compelling theory to explain the observations, a first task is to develop a robust phenomenological approach: If the acceleration is driven by some form of dark energy, then the phenomenology is determined by the form of the dark energy equation of state w(z) as a function of redshift. A major aim of ongoing and upcoming cosmological surveys is to measure w and its evolution at high accuracy. Since w(z) is not directly accessible to measurement, powerful reconstruction methods are needed to extract it reliably from observations. We have recently introduced a new reconstruction method for w(z) based on Gaussian process modeling. This method can capture nontrivial w(z) dependences and, most importantly, it yields controlled and unbiased error estimates. In this paper we extend the method to include a diverse set of measurements: baryon acoustic oscillations, cosmic microwave background measurements, and supernova data. We analyze currently available data sets and present the resulting constraints on w(z), finding that current observations are in very good agreement with a cosmological constant. In addition, we explore how well our method captures nontrivial behavior of w(z) by analyzing simulated data assuming high-quality observations from future surveys. We find that the baryon acoustic oscillation measurements by themselves already lead to remarkably good reconstruction results and that the combination of different high-quality probes allows us to reconstruct w(z) very reliably with small error bounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available