4.7 Article

Simulating merging binary black holes with nearly extremal spins

Journal

PHYSICAL REVIEW D
Volume 83, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.83.024010

Keywords

-

Funding

  1. Sherman Fairchild Foundation
  2. Brinson Foundation
  3. NSF at Caltech [PHY-0601459, PHY-1005655]
  4. NASA at Caltech [NNX09AF97G, NNX09AF96G]
  5. NCSA [TG-PHY990007N]
  6. NSF at Cornell [PHY-0969111, PHY-1005426]
  7. Canada Foundation for Innovation under Compute Canada
  8. Government of Ontario
  9. Ontario Research Fund-Research Excellence
  10. University of Toronto
  11. Division Of Physics
  12. Direct For Mathematical & Physical Scien [1005655] Funding Source: National Science Foundation
  13. Division Of Physics
  14. Direct For Mathematical & Physical Scien [969111] Funding Source: National Science Foundation

Ask authors/readers for more resources

Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available