4.7 Article

Discrete to continuum transition in multifractal spacetimes

Journal

PHYSICAL REVIEW D
Volume 84, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.84.061501

Keywords

-

Ask authors/readers for more resources

We outline a field theory on a multifractal spacetime. The measure in the action is characterized by a varying Hausdorff dimension and logarithmic oscillations governed by a fundamental physical length. A fine hierarchy of length scales identifies different regimes, from a microscopic structure with discrete symmetries to an effectively continuum spacetime. Thanks to general arguments from fractal geometry, this scenario explicitly realizes two indirect or conjectured features of most quantum gravity models: a change of effective spacetime dimensionality with the probed scale, and the transition from a fundamentally discrete quantum spacetime to the continuum. It also allows us to probe ultramicroscopic scales where spectral methods based on ordinary geometry typically fail. Consequences for noncommutative field theories are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available