4.7 Article

Collision of an innermost stable circular orbit particle around a Kerr black hole

Journal

PHYSICAL REVIEW D
Volume 83, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.83.024002

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [21740190]
  2. Grants-in-Aid for Scientific Research [21740190] Funding Source: KAKEN

Ask authors/readers for more resources

We derive a general formula for the center-of-mass (CM) energy for the near-horizon collision of two particles of the same rest mass on the equatorial plane around a Kerr black hole. We then apply this formula to a particle which plunges from the innermost stable circular orbit (ISCO) and collides with another particle near the horizon. It is found that the maximum value of the CM energy E-cm is given by E-cm/(2m(0)) similar or equal to 1.40/(4)root 1- a(*)(2) for a nearly maximally rotating black hole, where m(0) is the rest mass of each particle and a(*) is the nondimensional Kerr parameter. This coincides with the known upper bound for a particle which begins at rest at infinity within a factor of 2. Moreover, we also consider the collision of a particle orbiting the ISCO with another particle on the ISCO and find that the maximum CM energy is then given by E-cm/(2m(0)) similar or equal to 1.77/(6)root 1 - a(*)(2). In view of the astrophysical significance of the ISCO, this result implies that particles can collide around a rotating black hole with an arbitrarily high CM energy without any artificial fine-tuning in an astrophysical context if we can take the maximal limit of the black hole spin or a(*) --> 1. On the other hand, even if we take Thorne's bound on the spin parameter into account, highly or moderately relativistic collisions are expected to occur quite naturally, for E-cm/(2m(0)) takes 6.95 (maximum) and 3.86 (generic) near the horizon and 4.11 (maximum) and 2.43 (generic) on the ISCO for a(*) = 0.998. This implies that high-velocity collisions of compact objects are naturally expected around a rapidly rotating supermassive black hole. Implications to accretion flows onto a rapidly rotating black hole are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available