4.7 Article

Dark-matter decays and self-gravitating halos

Journal

PHYSICAL REVIEW D
Volume 81, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.81.103501

Keywords

-

Funding

  1. DOE [DE-FG03-92-ER40701]
  2. Gordon and Betty Moore Foundation

Ask authors/readers for more resources

We consider models in which a dark-matter particle decays to a slightly less massive daughter particle and a noninteracting massless particle. The decay gives the daughter particle a small velocity kick. Self-gravitating dark-matter halos that have a virial velocity smaller than this velocity kick may be disrupted by these particle decays, while those with larger virial velocities will be heated. We use numerical simulations to follow the detailed evolution of the total mass and density profile of self-gravitating systems composed of particles that undergo such velocity kicks as a function of the kick speed (relative to the virial velocity) and the decay time (relative to the dynamical time). We show how these decays will affect the halo mass-concentration relation and mass function. Using measurements of the halo mass-concentration relation and galaxy-cluster mass function to constrain the lifetime-kick-velocity parameter space for decaying dark matter, we find roughly that the observations rule out the combination of kick velocities greater than 100 km s(-1) and decay times less than a few times the age of the Universe.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available