4.7 Article

Quantum radiation of oscillons

Journal

PHYSICAL REVIEW D
Volume 82, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.82.045022

Keywords

-

Funding

  1. Department of Energy (D.O.E.) [DE-FC02-94ER40818]
  2. NSF [AST-0134999]

Ask authors/readers for more resources

Many classical scalar field theories possess remarkable solutions: coherently oscillating, localized clumps, known as oscillons. In many cases, the decay rate of classical small amplitude oscillons is known to be exponentially suppressed and so they are extremely long lived. In this work we compute the decay rate of quantized oscillons. We find it to be a power law in the amplitude and couplings of the theory. Therefore, the quantum decay rate is very different to the classical decay rate and is often dominant. We show that essentially all oscillons eventually decay by producing outgoing radiation. In single field theories the outgoing radiation has typically linear growth, while if the oscillon is coupled to other bosons the outgoing radiation can have exponential growth. The latter is a form of parametric resonance: explosive energy transfer from a localized clump into daughter fields. This may lead to interesting phenomenology in the early universe. Our results are obtained from a perturbative analysis, a non-perturbative Floquet analysis, and numerics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available