4.7 Article

Dynamical masses in modified gravity

Journal

PHYSICAL REVIEW D
Volume 81, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.81.103002

Keywords

-

Funding

  1. Gordon and Betty Moore Foundation at Caltech
  2. Fermilab, Kavli Institute for Cosmological Physics
  3. University of Chicago

Ask authors/readers for more resources

Differences in masses inferred from dynamics, such as velocity dispersions or x rays, and those inferred from lensing are a generic prediction of modified gravity theories. Viable models, however, must include some nonlinear mechanism to restore general relativity (GR) in dense environments, which is necessary to pass Solar System constraints on precisely these deviations. In this paper, we study the dynamics within virialized structures in the context of two modified gravity models, f(R) gravity and Dvali-Gabadadze-Porrati (DGP). The nonlinear mechanisms to restore GR, which f(R) and DGP implement in very different ways, have a strong impact on the dynamics in bound objects; they leave distinctive signatures in the dynamical mass-lensing mass relation as a function of mass and radius. We present measurements from N-body simulations of f(R) and DGP, as well as semianalytical models that match the simulation results to surprising accuracy in both cases. The semianalytical models are useful for making the connection to observations. Our results confirm that the environment and scale dependence of the modified gravity effects have to be taken into account when confronting gravity theories with observations of dynamics in galaxies and clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available