4.7 Article

Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects

Journal

PHYSICAL REVIEW D
Volume 77, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.77.042001

Keywords

-

Ask authors/readers for more resources

The Fisher-matrix formalism is used routinely in the literature on gravitational-wave detection to characterize the parameter-estimation performance of gravitational-wave measurements, given parametrized models of the waveforms, and assuming detector noise of known colored Gaussian distribution. Unfortunately, the Fisher matrix can be a poor predictor of the amount of information obtained from typical observations, especially for waveforms with several parameters and relatively low expected signal-to-noise ratios (SNR), or for waveforms depending weakly on one or more parameters, when their priors are not taken into proper consideration. In this paper I discuss these pitfalls; show how they occur, even for relatively strong signals, with a commonly used template family for binary-inspiral waveforms; and describe practical recipes to recognize them and cope with them. Specifically, I answer the following questions: (i) What is the significance of (quasi-)singular Fisher matrices, and how must we deal with them? (ii) When is it necessary to take into account prior probability distributions for the source parameters? (iii) When is the signal-to-noise ratio high enough to believe the Fisher-matrix result? In addition, I provide general expressions for the higher-order, beyond-Fisher-matrix terms in the 1/SNR expansions for the expected parameter accuracies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available