4.7 Article

Mixed sneutrinos, dark matter, and the CERN LHC

Journal

PHYSICAL REVIEW D
Volume 77, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.77.115015

Keywords

-

Ask authors/readers for more resources

We study the phenomenology of supersymmetric models in which gauge-singlet scalars mix with the minimal supersymmetric standard model (MSSM) sneutrinos through weak-scale A terms. After reviewing the constraints on mixed-sneutrino dark matter from measurements of Omega(CDM) and from direct-detection experiments, we explore mixed-sneutrino signatures relevant to the LHC. For a mixed-sneutrino lightest supersymmetric particle (LSP) and a right-handed slepton next-to-lightest supersymmetric particle (NLSP), decays of the lightest neturalino can produce opposite-sign, same-flavor (OSSF) dileptons with an invariant-mass distribution shifted away from the kinematic end point. This signature is possible for parameters that lead to a cosmologically viable mixed-sneutrino LSP. We also consider signatures that require larger mixing angles than preferred for mixed-sneutrino dark matter, but which are possible regardless of whether a mixed-sneutrino is the LSP. In some parameter regions, the charginos and neutralinos produced in cascades all decay dominantly to the lighter sneutrinos, leading to a kinematic edge in the jet-lepton invariant-mass distribution from the decay chain (q) over tilde -> chi(-) q -> nu(*)lq, without an OSSF dilepton signature. We explore the possibility of using mass-estimation methods to distinguish this mixed-sneutrino jet-lepton signature from an MSSM one. Finally, we consider signatures associated with Higgs-lepton or Z-lepton production in cascades involving the heavier sneutrinos.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available