4.5 Article

Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

Journal

PHYSICAL REVIEW C
Volume 90, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.90.024317

Keywords

-

Funding

  1. US Department of Energy (DOE) [DE-AC05-00OR22725, DE-FG02-96ER40963, DE-SC0008499, DE-FG02-13ER42025]
  2. National Natural Science Foundation of China [11375016, 11235001]

Ask authors/readers for more resources

Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver MADNESS-HFB is bench-marked against a two-dimensional coordinate-space solver HFB-AX that is based on the B-spline technique and a three-dimensional solver HFODD that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new MADNESS-HFB framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available