4.5 Article

Binding energy constraint on matter radius and soft dipole excitations of 22C

Journal

PHYSICAL REVIEW C
Volume 86, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.86.034331

Keywords

-

Funding

  1. University of Bergen

Ask authors/readers for more resources

An unusually large value of the C-22 matter radius has recently been extracted from measured reaction cross sections. The giant size can be explained by a very loose binding that is, however, not known experimentally yet. Within the three-body cluster model we have explored the sensitivity of the s-motion-dominated C-22 geometry to the two-neutron separation energy. A low energy of a few tens of keV is required to reach the alleged experimental lower value of the matter radius, while the experimental mean radius requires an extremely tiny binding. The dependence of the C-22 charge radius on the two-neutron separation energy is also presented. The soft dipole mode in C-22 is shown to be strongly affected by the loose binding and should be studied in the process of Coulomb fragmentation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available