4.5 Article

Quantifying short-range correlations in nuclei

Journal

PHYSICAL REVIEW C
Volume 86, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.86.044619

Keywords

-

Funding

  1. Research Foundation Flanders

Ask authors/readers for more resources

Background: Short-range correlations (SRC) are an important ingredient of the dynamics of nuclei. Purpose: An approximate method to quantify the magnitude of the two-nucleon (2N) and three-nucleon (3N) short-range correlations and their mass dependence is proposed. Method: The proposed method relies on the concept of the universality or local nuclear character of the SRC. We quantify the SRC by computing the number of independent-particle model (IPM) nucleon pairs and triples which reveal beyond-mean-field behavior. It is argued that those can be identified by counting the number of nucleon pairs and triples in a zero relative orbital momentum state. A method to determine the quantum numbers of pairs and triples in an arbitrary mean-field basis is outlined. Results: The mass dependence of the 2N and 3N SRC is studied. The predictions are compared to measurements. This includes the ratio of the inclusive inelastic electron scattering cross sections of nuclei to H-2 and He-3 at large values of the Bjorken variable. Corrections stemming from the center-of-mass motion of the pairs are estimated. Conclusions: We find that the relative probability per nucleon for 2N and 3N SRC has a soft dependence with mass number A and that the proton-neutron 2N SRC outnumber the proton-proton (neutron-neutron) 2N SRC. A linear relationship between the magnitude of the EMC effect and the predicted number of proton-neutron SRC pairs is observed. This provides support for the role of local nuclear dynamics on the EMC effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available